Decomposition of Multivariate Datasets with Structure/ordering of Observations or Variables Using Maximum Autocorrelation Factors

نویسنده

  • Rasmus Larsen
چکیده

This article presents methods for the analysis and decomposition of multivariate datasets where a given ordering/structure of the observations or the variables exist. Examples of such data sets are remote sensing imagery where observations (pixels) each consisting of a reflectance spectrum are organised in a two-dimensional grid. Another example is biological shape analysis. Here each observation (e.g. human bone, cerebral ventricle) is represented by a number of landmarks the coordinates of which are the variables. Here we do not have an ordering of the observations (individuals). However, normally we have an ordering of landmarks (variables) along the contour of the objects. In this context a landmark is a point with anatomical or geometrical meaning across observations. A further example is reflectance spectra from samples, where the samples do not exhibit any order but the variables do. For the case with observation ordering the maximum autocorrelation factor (MAF) transform was proposed for multivariate imagery in [1]. this corresponds to a R-mode analyse of the data matrix. We propose to extend this concept to situations with variable ordering. This corresponds to a Q-mode analysis of the datamatrix. We denote this methods Q-MAF decomposition. It turns out that in many situations the new variables resulting from the MAF and the Q-MAF analyses can be interpreted as a frequency analysis. However, contrary to Fourier decomposition these new variables are located in frequency as well as location (space, time, wavelength etc).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phase II monitoring of auto-correlated linear profiles using linear mixed model

In many circumstances, the quality of a process or product is best characterized by a given mathematical function between a response variable and one or more explanatory variables that is typically referred to as profile. There are some investigations to monitor auto-correlated linear and nonlinear profiles in recent years. In the present paper, we use the linear mixed models to account autocor...

متن کامل

Investigating Effect of Autocorrelation on Monitoring Multivariate Linear Profiles

Abstract Profile monitoring in statistical quality control has attracted attention of many researchers recently. A profile is a function between response variables and one or more independent variables. There have been only a limited number of researches on monitoring multivariate profiles. Indeed, monitoring correlated multivariate profiles is a new subject in the fileld of statistical proces...

متن کامل

Multivariate geostatistical analysis: an application to ore body evaluation

It is now common in the mining industry to deal with several correlated attributes, which need to be jointly simulated in order to reproduce their correlations and assess the multivariate grade risk reasonably. Approaches to multivariate simulation which remove the correlation between attributes of interest prior to simulate and then re-impose the relationship afterward have been gaining popula...

متن کامل

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran

Application of multivariate techniques in-line with spatial regionalization of AOD over Iran Introduction Models, satellites and terrestrial datasets have been used to detect and characterize aerosol. Nontheless, micoscale classification using remote sensing parameters considers as a deficiency. Thus, regionalizion and modeling aerosol without regard to political boundaries or a specific s...

متن کامل

Process Capability Analysis in the Presence of Autocorrelation

The classical method of process capability analysis necessarily assumes that collected data are independent; nonetheless, some processes such as biological and chemical processes are autocorrelated and violate the independency assumption. Many processes exhibit a certain degree of correlation and can be treated by autoregressive models, among which the autoregressive model of order one (AR (1))...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002